Lecture 14: Counting techniques and Probability

Math 115

October 17, 2019

Permutations and Combinations

Problem: We consider a club with three members A, B and C.

- 1. How many ways can they choose a president and vice president?
- 2. How many ways can they choose a two person committee?

Permutations and Combinations

Problem: We consider a club with three members A, B and C.

- 1. How many ways can they choose a president and vice president?
- 2. How many ways can they choose a two person committee?

The first involves *permutations*, P(3,2), because order matters, while the second involves *combinations*, C(3,2) (order doesn't matter).

Permutations and Combinations

Problem: We consider a club with three members A, B and C.

- 1. How many ways can they choose a president and vice president?
- 2. How many ways can they choose a two person committee?

The first involves *permutations*, P(3,2), because order matters, while the second involves *combinations*, C(3,2) (order doesn't matter).

▶ Lecture 13
$$\rightarrow P(n,r) = n(n-1)\cdots(n-(r-1)) = \frac{n!}{(n-r)!}$$
.

$$ightharpoonup C(n,r)$$
?

In Problem 2, we see that the possibles committees are AB, AC and BC: $3=\frac{6}{2}=\frac{P(3,2)}{2!}$

AB BA

AC CA

BC CB

Combinations

In general, notice that we can compute P(n,r) as follows:

- 1. Choose r objects without order $\rightarrow C(n,r)$ ways of doing this
- 2. Order the r objects $\rightarrow r!$ ways of doing this

Combinations

In general, notice that we can compute P(n,r) as follows:

- 1. Choose r objects without order $\rightarrow C(n,r)$ ways of doing this
- 2. Order the r objects $\rightarrow r!$ ways of doing this

Therefore

$$P(n,r) = C(n,r) \cdot r! \to C(n,r) = \frac{n!}{r!(n-r)!} = \binom{n}{r}$$

Combinations

In general, notice that we can compute P(n,r) as follows:

- 1. Choose r objects without order $\rightarrow C(n,r)$ ways of doing this
- 2. Order the r objects $\rightarrow r!$ ways of doing this

Therefore

$$P(n,r) = C(n,r) \cdot r! \to C(n,r) = \frac{n!}{r!(n-r)!} = \binom{n}{r}$$

Examples:

- 1. 8 students try out for quarterback. How many ways can the coach choose a first, second and third string quarterback?
- 2. 20 Penn students apply for a job with Google. How many ways can Google choose three of them for jobs?

With or without replacement, repeated objects

- 1. Problem: Flip a coin ten times and record the results:
 - 1.1 How many possible outcomes are there?
 - 1.2 How many of these have exactly 5 heads?
 - 1.3 How many outcomes have at most 3 heads?
 - 1.4 How many outcomes have at least 2 heads?

Hint: How many five-letter words can we form with the letters from BABBY?

With or without replacement, repeated objects

- 1. Problem: Flip a coin ten times and record the results:
 - 1.1 How many possible outcomes are there?
 - 1.2 How many of these have exactly 5 heads?
 - 1.3 How many outcomes have at most 3 heads?
 - 1.4 How many outcomes have at least 2 heads?

Hint: How many five-letter words can we form with the letters from BABBY? In general, the number permutations of n objects with n_1, n_2, \ldots, n_m repeated objects is

$$P(n; n_1, n_2, \dots, n_m) = \frac{n!}{n_1! n_2! \cdots n_m!}$$

Sampling with and without replacement

- 1. Problem: Given ten balls numbered $0, 1, \dots, 9$, choose k balls with replacement and keep track of the order picked. How many ways can we do this?
- 2. 6 balls are chosen with replacement from balls labeled $1, 2, 3, \ldots, 30$.
 - 2.1 How many ways can this be done?
 - 2.2 Of these, how many ways has at least one of the numbers $1,2,\dots,10$ show up?

- ▶ Problem: How many subsets are there of the set $\{a, b, c, ..., z\}$?
 - 1. 0-element sets: $\binom{26}{0}$

- ▶ Problem: How many subsets are there of the set $\{a, b, c, \dots, z\}$?

 - 1. 0-element sets: $\binom{26}{0}$ 2. 1-element sets: $\binom{26}{1}$

▶ Problem: How many subsets are there of the set $\{a, b, c, \dots, z\}$?

- 1. 0-element sets: $\binom{26}{0}$ 2. 1-element sets: $\binom{26}{1}$ 3. 2-element sets: $\binom{26}{2}$

▶ Problem: How many subsets are there of the set $\{a, b, c, \dots, z\}$?

- 1. 0-element sets: $\binom{26}{0}$ 2. 1-element sets: $\binom{26}{1}$ 3. 2-element sets: $\binom{26}{2}$
- 4. \vdots 5. 26-element sets: $\binom{26}{26}$

Problem: How many subsets are there of the set $\{a, b, c, \dots, z\}$?

- 1. 0-element sets: $\binom{26}{0}$ 2. 1-element sets: $\binom{26}{1}$ 3. 2-element sets: $\binom{26}{2}$
- 5. 26-element sets: $\binom{26}{26}$

So the answer is

$$\binom{26}{0} + \binom{26}{1} + \dots + \binom{26}{26} = (1+1)^{26} = 2^{26}$$

Theorem

$$(x+y)^n = \binom{n}{0} x^n y^0 + \binom{n}{1} x^{n-1} y + \binom{n}{2} x^{n-2} y^2 + \dots + \binom{n}{n} x^0 y^n.$$

Idea: $(x+y)^n=(x+y)(x+y)\cdots(x+y)\to \text{How many ways can obtain } x^ry^{n-r}$ when you multiply?

Some more problems

- 1. How many ways are there to choose at least two films from a collection of 9?
- 2. 21 soccer players are to be divided into 3 teams of 7. How many ways can you do this?

The *Probability* of an *event* represents the long run likelihood that it will happen.

It is always a number p between 0 and 1. Definitions:

- **Experiment**: An activity with an observable outcome.
- **Trial**: Each repetition of the experiment.
- Outcome: The result of the trial.
- **Sample space** (S): The set of all possible outcomes.
- Event: A subset of the sample space.

Some *experiments*:

- 1. Flip a coin and observe the side that is up.
- Choose a student and record the student's birthday.
- Roll two dice and record the sum of the two sides that show on top.
- Follow a patient after a course of treatment for 5 years and observe the recovery time (in days).
- Measure and record the height of a subject.

For each experiment:

- Examples of outcomes?
- What is the sample space?
- Example of events?

Modeling (axioms) of probability:

To every event E we assign a **probability**, P(E), that has to satisfy the following:

- 1. For every event A, it holds that $P(A) \geq 0$
- **2**. P(S) = 1
- 3. For every sequence of disjoint events A_1, A_2, \ldots , we have that

$$P(\cup_{n\geq 1} A_n) = \sum_{n\geq 1} P(A_n).$$

Some consequences are:

- $ightharpoonup P(\emptyset) = 0.$
- For every event A, $P(A^c) = 1 P(A)$.
- ▶ If $A \subset B$, then $P(A) \leq P(B)$.
- ▶ $0 \le P(A) \le 1$ for any event A.
- $P(A \cup B) = P(A) + P(B) P(A \cap B).$

Example (remember lecture 13): Of the 500 students in some college, 400 are taking a math course, 300 are taking an economics course, and 250 are taking both a math and an economics course. How many are taking neither a math nor an econ course?

Rewrite it as: The probability that any given student at some college is taking a math course is 4/5. The probability that a student is taking an economics course is 3/5. The probability that a student is taking both is 1/2. What is the probability that a student chosen at random is taking neither a math course nor an econ course?

- What is the sample space?
- We want to know $P((M \cup E)^c)$.

Remark: The previous case is an example of **simple** sample space: There is a finite number of outcomes and they are equally probable. In the simple sample space case, the probability of an event E is given by

$$P(E) = \frac{\#(E)}{\#(S)}.$$

Remark: The previous case is an example of **simple** sample space: There is a finite number of outcomes and they are equally probable. In the simple sample space case, the probability of an event E is given by

$$P(E) = \frac{\#(E)}{\#(S)}.$$

Source of typical mistakes!

Remark: The previous case is an example of **simple** sample space: There is a finite number of outcomes and they are equally probable. In the simple sample space case, the probability of an event E is given by

$$P(E) = \frac{\#(E)}{\#(S)}.$$

Source of typical mistakes! Examples:

- 1. Roll a die. What is the sample space? Is it a simple sample space?
- 2. Roll tow dice and add the numbers. What is the sample space? Is it a simple sample space?

Remark: The previous case is an example of **simple** sample space: There is a finite number of outcomes and they are equally probable. In the simple sample space case, the probability of an event E is given by

$$P(E) = \frac{\#(E)}{\#(S)}.$$

Source of typical mistakes! Examples:

- 1. Roll a die. What is the sample space? Is it a simple sample space?
- 2. Roll tow dice and add the numbers. What is the sample space? Is it a simple sample space?

We can however record both dice separately and make it a simple sample space:

Sample space of rolling two dice:

$$(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), \\ (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), \\ (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), \\ (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), \\ (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), \\ (6,1), (6,2), (6,3), (6,4), (6,5), (6,6), \\ \end{cases}$$

So here #(S) = 36 and each outcome is equally probable.

▶ Determine P(Sum is 7).

In summary, to use $P(E) = \frac{\#E}{\#S}$, one needs

- 1. A finite sample space with equally probably outcomes (that is, a simple sample space)
- 2. The ability to compute #E and #S.

Probability: problems

- 1. Worms have invaded 5 apples in a crate of 1000 apples. An inspector checks 10 apples at random for worms. What is the probability that the crate passes?
- 2. What is the probability that in a group of 10 people at least 2 will share the birthday date? (Ignore leap years) How about a group of 60 people?
- 3. (Example of **Discrete infinite sample space**) Consider the positive integers $\{n:n=1,2,3,\dots\}$, such that the probability of n happening is $1/2^n$ (note that the sum of the probabilities is 1). What is the probability of choosing a number greater of equal to 3?
- 4. (Example of **Continuous infinite sample space**). If a point is randomly chosen in the plane inside the unit circle, what is the probability that it came from the inside the circle of radius 1/2?

Solution to the Birthday problem: In general, say there are n people. Let p be the probability that at least two people share the birthday.

Sample space: How many ways can n people have their birthdays?

Solution to the Birthday problem: In general, say there are n people. Let p be the probability that at least two people share the birthday.

Sample space: How many ways can n people have their birthdays? Well, since there are 365 days, in total there are 365n possibilities.

Solution to the Birthday problem: In general, say there are n people. Let p be the probability that at least two people share the birthday.

- Sample space: How many ways can n people have their birthdays? Well, since there are 365 days, in total there are 365n possibilities.
- ▶ How many ways are there for the n people to have distinct birthdays?

Solution to the Birthday problem: In general, say there are n people. Let p be the probability that at least two people share the birthday.

- Sample space: How many ways can n people have their birthdays? Well, since there are 365 days, in total there are 365n possibilities.
- ▶ How many ways are there for the *n* people to have distinct birthdays? The first person can be born any of the 365 days, then the second only has 364 choices, the third 363, and so on. So

$$365 \cdot 364 \cdot \cdots \cdot (365 - n + 1).$$

Therefore, we have that the probability of n people having distinct birthdays, P, is

$$P = \frac{365 \cdot 364 \cdot \dots \cdot (365 - n + 1)}{365^n},$$

and thus

$$p = 1 - P = 1 - \frac{365 \cdot 364 \cdot \dots \cdot (365 - n + 1)}{365^n}.$$

One can compute that:

$$n = 10 20 30 40 50 60$$

 $p = 0.12 0.41 0.71 0.89 0.97 0.99$