HOMEWORK ASSIGNMENT 4

Name: Due: Wednesday September 25 (before recitation)

Note: Homework must be submitted online on Canvas (scanned).

PROBLEM 1:

Find the gradient of f, ∇f , at the given point:

1.
$$f(x, y, z) = x^2 + y^2 - 2z^2 + z \ln x$$
 at $(1, 1, 1)$

2.
$$f(x, y, z) = (x^2 + y^2 + z^2)^{-1/2} + \ln(xyz)$$
 at $(-1, 2 - 2)$

PROBLEM 2:

Find the directions in which the functions increase and decrease most rapidly at P_0 . Then find the derivatives of the functions in these directions:

1.
$$f(x,y) = x^2y + e^{xy}\sin y$$
 at $P_0(1,0)$

2.
$$f(x, y, z) = \ln(xy) + \ln(yz) + \ln(xz)$$
 at $P_0(1, 1, 1)$.

PROBLEM 3:

Consider f(x,y) = xy. Sketch the curve f(x,y) = -4 together with ∇f and the tangent line at the point (2,-2). Then write an equation for the tangent line and an equation for the normal line at that point.

PROBLEM 4:

- 1. In what direction is the derivative of $f(x,y) = xy + y^2$ at P(3,2) equal to zero?
- 2. Is there a direction \vec{u} in which the rate of change of $f(x,y) = x^2 3xy + 4y^2$ at P(1,2) equals 14? Give reasons for your answer.

Problem 5:

Find an equation for the tangent plane and an equation for the normal line to the surface $2z - x^2 = 0$ at $P_0(2, 0, 2)$.

PROBLEM 6:

By about how much will

$$g(x, y, z) = e^x \cos(yz)$$

change as the point P(x, y, z) moves from the origin a distance of ds = 0.1 in the direction of $2\vec{i} + 2\vec{j} - 2\vec{k}$?

Problem 7:

Find the linearization L(x, y) of the function at each point:

- 1. $f(x,y) = e^x \cos y$ at (0,0) and at $(0,\pi/2)$.
- 2. $f(x,y) = (x+y+2)^2$ at (0,0) and at (1,2).
- 3. $f(x,y) = x^2 3xy + 5$ at $P_0(2,1)$.

Problem 8:

You plan to calculate the area of a long, thin rectangle from measurements of its length and width. Which dimension should you measure more carefully to obtain a more accurate value of the area? Give reasons for your answer.

PROBLEM 9:

Find all the local maxima, local minima and saddle points of $f(x,y) = x^3 + 3xy^2 - 15x + y^3 - 15y$.

PROBLEM 10:

Read Sections 14.7 and 14.8 of *Thomas' Calculus Early Transcendentals* book.

Midterm 1 covers sections 12.1, 12.2, 12.3, 12.5 and 14.1 to 14.8. Which topics would you like to review most for Midterm 1?