
2 First-order linear equations

Last time we saw how some simple PDEs can be reduced to ODEs, and subsequently solved using ODE
methods. For example, the equation

ux = 0 (2.1)

has “constant in x” as its general solution, and hence u depends only on y, thus u(x, y) = f(y) is the
general solution, with f an arbitrary function of a single variable. Today we will see that any linear
first order PDE can be reduced to an ordinary differential equation, which will then allow as to tackle
it with already familiar methods from ODEs.

Let us start with a simple example. Consider the following constant coefficient PDE

aux + buy = 0. (2.2)

Here a and b are constants, such that a2 +b2 6= 0, i.e. at least one of the coefficients is nonzero (otherwise
this would not be a differential equation). Using the inner (scalar or dot) product in R2, we can rewrite
the left hand side of (2.2) as

(a, b) · (ux, uy) = 0, or (a, b) · ∇u = 0.

Denoting the vector (a, b) = v, we see that the left hand side of the above equation is exactly Dvu(x, y),
the directional derivative of u in the direction of the vector v. Thus the solution to (2.2) must be
constant in the direction of the vector v = ai + bj.
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Figure 2.1: Characteristic lines bx− ay = c.
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Figure 2.2: Change of coordinates.

The lines parallel to the vector v have the equation

bx− ay = c, (2.3)

since the vector (b,−a) is orthogonal to v, and as such is a normal vector to the lines parallel to v. In
equation (2.3) c is an arbitrary constant, which uniquely determines the particular line in this family of
parallel lines, called characteristic lines for the equation (2.2).

As we saw above, u(x, y) is constant in the direction of v, hence also along the lines (2.3). The line
containing the point (x, y) is determined by c = bx− ay, thus u will depend only on bx− ay, that is

u(x, y) = f(bx− ay), (2.4)
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where f is an arbitrary function. One can then check that this is the correct solution by plugging it
into the equation. Indeed,

a∂xf(bx− ay) + b∂yf(bx− ay) = abf ′(bx− ay)− baf ′(bx− ay) = 0.

The geometric viewpoint that we used to arrive at the solution is akin to solving equation (2.1) simply
by recognizing that a function with a vanishing derivative must be constant. However one can approach
equation (2.2) from another perspective, by trying to reduce it to an ODE.

2.1 The method of characteristics

To have an ODE, we need to eliminate one of the partial derivatives in the equation. But we know that
the directional derivative vanishes in the direction of the vector (a, b). Let us then make a change of the
coordinate system to one that has its “x-axis” parallel to this vector, as in Figure 2. In this coordinate
system

(ξ, η) = ((x, y) · (a, b), (x, y) · (b,−a)) = (ax+ by, bx− ay).

So the change of coordinates is {
ξ = ax+ by,
η = bx− ay. (2.5)

To rewrite the equation (2.2) in this coordinates, notice that

ux = uξ
∂ξ

∂x
+ uη

∂η

∂x
= auξ + buη,

uy = uξ
∂ξ

∂y
+ uη

∂η

∂y
= buξ − auη.

Thus,
0 = aux + buy = a(auξ + buη) + b(buξ − auη) = (a2 + b2)uξ.

Now, since a2 + b2 6= 0, then, as we anticipated,

uξ = 0,

which is an ODE. We can solve this last equation just as we did in the case of equation (2.1), arriving
at the solution

u(ξ, η) = f(η).

Changing back to the original coordinates gives u(x, y) = f(bx− ay). This is the same solution that we
derived with the geometric deduction. This method of reducing the PDE to an ODE is called the method
of characteristics, and the coordinates (ξ, η) given by formulas (2.5) are called characteristic coordinates.

Example 2.1. Find the solution of the equation 3ux − 5uy = 0 satisfying the condition u(0, y) = sin y.
From the above discussion we know that u will depend only on η = −5x−3y, so u(x, y) = f(−5x−3y).

The solution also has to satisfy the additional condition (called initial condition), which we verify by
plugging in x = 0 into the general solution.

sin y = u(0, y) = f(−3y).

So f(z) = sin(− z
3
), and hence u(x, y) = sin

(
5x+3y

3

)
, which one can verify by substituting into the

equation and the initial condition.
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2.2 General constant coefficient equations

We can easily adapt the method of characteristics to general constant coefficient linear first-order equa-
tions

aux + buy + cu = g(x, y). (2.6)

Recall that to find the general solution of this equation it is enough to find the general solution of the
homogeneous equation

aux + buy + cu = 0, (2.7)

and add to this a particular solution of the inhomogeneous equation (2.6). Notice that in the charac-
teristic coordinates (2.5), equation (2.7) will take the form

(a2 + b2)uξ + cu = 0, or uξ +
c

a2 + b2
u = 0,

which can be treated as an ODE in ξ. The solution to this ODE has the form

uh(ξ, η) = e
− c
a2+b2

ξ
f(η),

with f again being an arbitrary single-variable function. Changing the coordinates back to the original
(x, y), we will obtain the general solution to the homogeneous equation

uh(x, y) = e
− c(ax+by)

a2+b2 f(bx− ay).

You should verify that this indeed solves equation (2.7).
To find a particular solution of (2.6), we can use the characteristic coordinates to reduce it to the

inhomogeneous ODE

(a2 + b2)uξ + cu = g(ξ, η), or uξ +
c

a2 + b2
u =

g(ξ, η)

a2 + b2
.

Having found the solution to the homogeneous ODE, we can find the solution to this inhomogeneous
equation by e.g. variation of parameters. So the particular solution will be

up = e
− c
a2+b2

ξ

ˆ
g(ξ, η)

a2 + b2
e

c
a2+b2

ξ
dξ.

The general solution of (2.6) is then

u(ξ, η) = uh + up = e
− c
a2+b2

ξ

(
f(η) +

ˆ
g(ξ, η)

a2 + b2
e

c
a2+b2

ξ
dξ

)
.

To find the solution in terms of (x, y), one needs to first carry out the integration in ξ in the above
formula, then replace ξ and η by their expressions in terms of x and y.

Example 2.2. Find the general solution of −2ux + 4uy + 5u = ex+3y.
The characteristic change of coordinates for this equation is given by{

ξ = −2x+ 4y,
η = 4x+ 2y.

From these we can also find the expressions of x and y in terms of (ξ, η). In particular notice that
x+ 3y = ξ+η

2
. In the characteristic coordinates the equation reduces to

20uξ + 5u = e
ξ+η
2 .
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The general solution of the homogeneous equation associated with the above equation is

uh = e−
1
4
ξf(η),

and the particular solution will be

up = e−
1
4
ξ

ˆ
e
ξ+η
2

20
e

1
4
ξ dξ = e−

1
4
ξ · 1

15
e
η
2 e

3
4
ξ = e−

1
4
ξ · 1

15
e

1
4

(3ξ+2η).

Adding these two will give the general solution to the inhomogeneous equation

u(ξ, η) = e−
1
4
ξ

(
f(η) +

1

15
e

1
4

(3ξ+2η)

)
.

Finally, substituting the expressions for ξ and η in terms of (x, y), we will obtain the solution

u(x, y) = e−
1
4

(2x−4y)

(
f(4x+ 2y) +

1

15
e

1
4

(2x+16y)

)
.

You should check that this indeed solves the differential equation.

2.3 Variable coefficient equations

The method of characteristics can be generalized to variable coefficient first-order linear PDEs as well,
albeit the change of variables may no longer be orthogonal. The general variable coefficient linear
first-order equations is

a(x, y)ux + b(x, y)uy + c(x, y)u = d(x, y). (2.8)

Let us first consider the following simple particular case

ux + yuy = 0. (2.9)

Using our geometric intuition from the constant coefficient equations, we see that the directional deriva-
tive of u in the direction of the vector v = (1, y) is constant. Notice that the vector v itself is no longer
constant, and varies with y. The curves that have v as their tangent vector have slope y

1
, and thus satisfy

dy

dx
=
y

1
.

We can solve this equation as an ODE, and obtain the general solution

y = Cex, or e−xy = C. (2.10)

As in the case of the constant coefficients, the solution to the equation (2.9) will be constant along these
curves, called characteristic curves. This family of non-intersecting curves fills the entire coordinate
plane, and the curve containing the point (x, y) is uniquely determined by C = e−xy, which implies that
the general solution to (2.9) is

u(x, y) = f(C) = f(e−xy).

As always, we can check this by substitution.

ux + yuy = −f ′(e−xy)e−xy + yf ′(e−xy)e−x = 0.

Let us now try to generalize the method of characteristics to the equation

a(x, y)ux + b(x, y)uy = 0. (2.11)
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The idea is again to introduce new coordinates (ξ, η), which will reduce (2.11) to an ODE. Suppose{
ξ = ξ(x, y),
η = η(x, y)

(2.12)

gives such a change of variables. To rewrite the equation in this coordinates, we compute

ux = uξξx + uηηx,

uy = uξξy + uηηy,

and substitute these into equation (2.11) to get

(aξx + bξy)uξ + (aηx + bηy)uη = 0.

Since we would like this to give us an ODE, say in ξ, we require the coefficient of uη to be zero,

aηx + bηy = 0.

Without loss of generality, we may assume that a 6= 0 (locally). Notice that for curves y(x) that have
the slope dy

dx
= b

a
we have

d

dx
η(x, y(x)) = ηx + ηy

dy

dx
= ηx +

b

a
ηy = 0.

So the characteristic curves, just as before, are given by

dy

dx
=
b

a
. (2.13)

The general solution to this ODE will be η(x, y) = C, with ηy 6= 0 (otherwise ηx = 0 as well, and this
will not be a solution). This is how we find the new variable η, for which our PDE reduces to an ODE.
We choose ξ(x, y) = x as the other variable. For this change of coordinates the Jacobian determinant is

J =
∂(ξ, η)

∂(x, y)
=

ξx ξy
ηx ηy

= ηy 6= 0.

Thus, (2.12) constitutes a non-degenerate change of coordinates. In the new variables equation (2.11)
reduces to

a(ξ, η)uξ = 0, hence uξ = 0,

which has the solution
u = f(η).

The general variable coefficient equation (2.8) in these coordinates will reduce to

a(ξ, η)uξ + c(ξ, η)u = d(ξ, η),

which is called the canonical form of equation (2.8). This equation, as in previous cases, can be solved
by standard ODE methods.

Example 2.3. Find the general solution of the equation

xux − yuy + y2u = y2, x, y 6= 0.

Condition (2.13) in this case is dy
dx

= − y
x
. This is a separable ODE, which can be solved to obtain the

general solution xy = C. Thus, our change of coordinates will be{
ξ = x,
η = xy.
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In these coordinates the equation takes the form

ξuξ +
η2

ξ2
u =

η2

ξ2
, or uξ +

η2

ξ3
u =

η2

ξ3
.

Using the integrating factor

e
´ η2
ξ3
dξ

= e
− η2

2ξ2 ,

the above equation can be written as (
e
− η2

2ξ2 u

)
ξ

= e
− η2

2ξ2
η2

ξ3
.

Integrating both sides in ξ, we arrive at

e
− η2

2ξ2 u =

ˆ
e
− η2

2ξ2
η2

ξ3
dξ = e

− η2

2ξ2 + f(η).

Thus, the general solution will be given by

u(ξ, η) = e
η2

2ξ2

(
f(η) + e

− η2

2ξ2

)
= e

η2

2ξ2 f(η) + 1.

Finally, substituting the expressions of ξ and η in terms of (x, y) into the solution, we obtain

u(x, y) = f(xy)e
y2

2 + 1.

One should again check by substitution that this is indeed a solution to the PDE.

2.4 Conclusion

The method of characteristics is a powerful method that allows one to reduce any first-order linear PDE
to an ODE, which can be subsequently solved using ODE techniques. We will see in later lectures that
a subclass of second order PDEs – second order hyperbolic equations can be also treated with a similar
characteristic method.
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3 Method of characteristics revisited

3.1 Transport equation

A particular example of a first order constant coefficient linear equation is the transport, or advection
equation ut + cux = 0, which describes motions with constant speed. One way to derive the transport
equation is to consider the dynamics of the concentration of a pollutant in a stream of water flowing
through a thin tube at a constant speed c.

Let u(t, x) denote the concentration of the pollutant in gr/cm (unit mass per unit length) at time t.
The amount of pollutant in the interval [a, b] at time t is then

ˆ b

a

u(x, t) dx.

Due to conservation of mass, the above quantity must be equal to the amount of the pollutant after
some time h. After the time h, the pollutant would have flown to the interval [a+ ch, b+ ch], thus the
conservation of mass gives ˆ b

a

u(x, t) dx =

ˆ b+ch

a+ch

u(x, t+ h) dx.

To derive the dynamics of the concentration u(x, t), differentiate the above identity with respect to b to
get

u(b, t) = u(b+ ch, t+ h).

Notice that this equation asserts that the concentration at the point b at time t is equal to the con-
centration at the point b + ch at time t + h, which is to be expected, due to the fact that the water
containing the pollutant particles flows with a constant speed. Since b is arbitrary in the last equation,
we replace it with x. Now differentiate both sides of the equation with respect to h, and set h equal to
zero to obtain the following differential equation for u(x, t).

0 = cux(x, t) + ut(x, t),

or
ut + cux = 0. (3.1)

Since equation (3.1) is a first order linear PDE with constant coefficients, we can solve it by the
method of characteristics. First, we rewrite the equation as

(1, c) · ∇u = 0,

which implies that the slope of the characteristic lines is given by

dx

dt
=
c

1
.

Integrating this equation, one arrives at the equation for the characteristic lines

x = ct+ x(0), (3.2)

where x(0) is the coordinate of the point at which the characteristic line intersects the x-axis. The
solution to the PDE (3.1) can then be written as

u(t, x) = f(x− ct) (3.3)

for any arbitrary single-variable function f .
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Let us now consider a particular initial condition for u(t, x)

u(0, x) =

{
x 0 < x < 1,
0 otherwise.

(3.4)

According to (3.3), u(0, x) = f(x), which determines the function f . Having found the function from the
initial condition, we can now evaluate the solution u(t, x) of the transport equation from (3.3). Indeed

u(t, x) = f(x− ct) =

{
x− ct 0 < x− ct < 1
0 otherwise

Noticing that the inequalities 0 < x − ct < 1 imply that x is in-between ct and ct + 1, we can rewrite
the above solution as

u(t, x) =

{
x− ct ct < x < ct+ 1,
0 otherwise,

which is exactly the initial function u(0, x), given by (3.4), moved to the right along the x-axis by ct
units. Thus, the initial data u(0, x) travels from left to right with constant speed c.

We can alternatively understand the dynamics by looking at the characteristic lines in the xt coordi-
nate plane. From (3.2), we can rewrite the characteristics as

t =
1

c
(x− x(0)).

Along these characteristics the solution remains constant, and one can obtain the value of the solution
at any point (t, x) by tracing it back to the x-axis:

u(t, x) = u(t− t, x− ct) = u(0, x(0)).

t=0 t=3

x

u

Figure 3.1: u(t, x) at two different times t.

x

t

u

Figure 3.2: The graph of u(t, x) colored with re-
spect to time t.

Figure 1 gives the graphs of u(t, x) at two different times, while Figure 3.1 gives the three dimensional
graph of u(t, x) as a function of two variables.

3.2 Quasilinear equations

We next look at a simple nonlinear equation, for which the method of characteristics can be applied as
well. The general first order quasilinear equation has the following form

a(x, y, u)ux + b(x, y, u)uy = g(x, y, u).
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We can see that the highest order derivatives, in this case the first order derivatives, enter the equation
linearly, although the coefficients depend on the unknown u. A very particular example of first order
quasilinear equations is the inviscid Burger’s equation

ut + uux = 0. (3.5)

As before, we can rewrite this equation in the form of a dot product, which is a vanishing condition for
a certain directional derivative

(1, u) · (ut, ux) = 0, or (1, u) · ∇u = 0.

This shows that the tangent vector of the characteristic curves, v = (1, u), depends on the unknown
function u.

3.3 Rarefaction

Let as now look at a particular initial condition, and try to construct solutions along the characteristic
curves. Suppose

u(0, x) =

{
1 if x < 0,
2 if x > 0.

(3.6)

The slope of the characteristic curves satisfies

dx

dt
= u(t, x(t)) = u(0, x(0)).

Here we used the fact that the directional derivative of the solution vanishes in the direction of the
tangent vector of the characteristic curves. This implies that the solution remains constant along the
characteristics, i.e. u(t, x(t)) remains constant for all values of t. We can find the equation of the
characteristics by integrating the above equation, which gives

x(t) = u(0, x(0))t+ x(0). (3.7)

Using the initial condition (3.6), this equation will become

x(t) =

{
t+ x(0) if x(0) < 0,
2t+ x(0) if x(0) > 0.

Thus, the characteristics have different slopes depending on whether they intersect the x axis at a pos-
itive, or negative intercept x(0). We can express the characteristic lines to give t as a function of x, so
that the initial condition is defined along the horizontal x axis.

t =

{
x− x(0) if x(0) < 0,
1
2
(x− x(0)) if x(0) > 0.

(3.8)

Some of the characteristic lines corresponding to the initial condition (3.6) are sketched in Figure 3
below. The solid lines are the two families of characteristics with different slopes.

Notice that in this case the waves originating at x(0) > 0 move to the right faster than the waves
originating at points x(0) < 0. Thus an increasing gap is formed between the faster moving wave front
and the slower one. One can also see from Figure 3, that there are no characteristic lines from either of
the two families given by (3.8) passing through the origin, since there is a jump discontinuity at x = 0
in the initial condition (3.6). In fact, in this case we can imagine that there are infinitely many charac-
teristics originating from the origin with slopes ranging between 1

2
and 1 (the dotted lines in Figure 3).

The proper way to see this is to notice that in the case of x(0) = 0, (3.7) implies that

u =
x

t
, if t < x < 2t.
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Figure 3.3: Characteristic lines illustrating rar-
efaction.
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Figure 3.4: Characteristic lines illustrating shock
wave formation.

This type of waves, which arise from decompression, or rarefaction of the medium due to the increasing
gap formed between the wave fronts traveling at different speeds are called rarefaction waves. Putting all
the pieces together, we can write the solution to equation (3.5) satisfying initial condition (3.6) as follows.

u(t, x) =

{
1 if x < t,
x
t

if t < x < 2t,
2 if x > 2t.

3.4 Shock waves

A completely opposite phenomenon to rarefaction is seen when one has a faster wave moving from left
to right catching up to a slower wave. To illustrate this, let us consider the following initial condition
for the Burger’s inviscid equation

u(0, x) =

{
2 if x < 0,
1 if x > 0.

(3.9)

Then the characteristic lines (3.7) will take the form

x(t) =

{
2t+ x(0) if x(0) < 0,
t+ x(0) if x(0) > 0.

Or expressing t in terms of x, we can write the equations as

t =

{
1
2
(x− x(0)) if x(0) < 0,
x− x(0) if x(0) > 0.

(3.10)

Thus, the characteristics origination from x(0) < 0 have smaller slope (corresponding to faster speed),
than the characteristics originating from x(0) > 0. In this case the characteristics from the two families
will intersect eventually, as seen in Figure 4. At the intersection points the solution u becomes multi-
valued, since the point can be traced back along either of the characteristics to an initial value of either
1, or 2, given by the initial condition (3.9). This phenomenon is known as shock waves, since the faster
moving wave catches up to the slower moving wave to form a multivalued (multicrest) wave.

3.5 Conclusion

We saw that the method of characteristics can be generalized to quasilinear equations as well. Using the
method of characteristics for the inviscid Burger’s equations, we discovered that in the case of nonlinear
equations one may encounter characteristics that diverge from each other to give rise to an unexpected
solution in the widening region in-between, as well as intersecting characteristics, leading to multivalued
solutions. These are nonlinear phenomena, and do not arise in the study of linear PDEs.
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